Contextual Convolutional Neural Network Filtering Improves Em Image Segmentation
نویسندگان
چکیده
We designed a contextual filtering algorithm for improving the quality of image segmentation. The algorithm was applied on the task of building the Membrane Detection Probability Maps (MDPM) for segmenting electron microscopy (EM) images of brain tissues. To achieve this, we executed supervised training of a convolutional neural network to recover the ground-truth label of the masked-out center pixel from patches sampled from an un-refined MDPM. Through this training process the model learns the distribution of the segmentation ground-truth map . By applying this trained network over MDPMs we are able to integrate contextual information to obtain with better spatial consistency in the high-level representation space. By iteratively applying this network over the MDPMs for multiple rounds, we were able to significantly improve the EM image segmentation results.
منابع مشابه
A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملConvolutional Networks Can Learn to Generate Affinity Graphs for Image Segmentation
Many image segmentation algorithms first generate an affinity graph and then partition it. We present a machine learning approach to computing an affinity graph using a convolutional network (CN) trained using ground truth provided by human experts. The CN affinity graph can be paired with any standard partitioning algorithm and improves segmentation accuracy significantly compared to standard ...
متن کاملAn Iterative Convolutional Neural Network Algorithm Improves Electron Microscopy Image Segmentation
To build the connectomics map of the brain, we developed a new algorithm that can automatically refine the Membrane Detection Probability Maps (MDPM) generated to perform automatic segmentation of electron microscopy (EM) images. To achieve this, we executed supervised training of a convolutional neural network to recover the removed center pixel label of patches sampled from a MDPM. MDPM can b...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016